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� Upper tropospheric ozone and water are important greenhouse gases and are
strongly affected by convection

� 150mb is the bottom of the TTL and drives the stratospheric entry value of
many gases (NOT water)

� Recent work (Jiang et al) shows relationship of 150mb CO to convection on a
bulk statistical basis

� Models do poorly in realizing convection, especially in the tropics

� Can we explain water and CO at 150mb with trajectories and really simplified
yet accurate convection?



CO at 146.8mb and incidence of convection reaching 146.78mb, July 22-28, 2007.
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Model Formulation

� Perform 14 day back trajectories from a cluster of points (15) surrounding each
tropical (-35 to 35 degrees) 150 mb MLS observation for 5 days (July 23-27,
2007) – about 110000 trajectories.

� Both adiabatic trajectories and diabatic trajectories (based on clear sky heating
rates).

� Run trajectories through 3-hourly global meteorological IR window channel
satellite imagery.

� Establish when and where each trajectory intersects convection (as deter-
mined by comparing trajectory altitude to cloud altitude). Some trajectories
never intersect convection.



Convective influence on an air parcel



Model Formulation (continued)

� Calculate Convective Fraction (fraction of [15] cluster points that are convec-
tively influenced)

� Can clearly establish the location of convection affecting certain MLS points.

� Calculate CO by convolving surface CO (based on emissions) at location of
convection with fractional convective influence and mixing with ”clean” back-
ground.

� Calculate water based on the minimum ice saturation mixing ratio (ISMR) since
the most recent convection. Use NCEP for initial water (and minimum ISMR)
for parcels with no convection.



Convective Fraction, CO, and Convection
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Location of convection for High CO regions
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Location of convection for Lower CO regions
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Convolved CO using Diabatic and Adiabatic Trajectories
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Adiabatic Trajectories Diabatic Trajectories
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Convolved CO using Diabatic Trajectories with Convective Fraction
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Convolved Water using Adiabatic and Diabatic Trajectories
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Convolved Water using Diabatic Trajectories
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Conclusions(1)

� Have used satellite imagery and trajectories to calculate CO and H2O at 150mb

� Satellite imagery is probably the most accurate information we have on globally
locating convection on the appropriate time scale and getting the altitude right

� CO simulation is quite successful – this does not depend on using adiabatic or
diabatic trajectories.

� Note that we are scaling the surface convective input by the log of emissions,
so the success is in the pattern and not the quantity.

� At least during this period, the biomass burning peak in Africa does not appear
to be driving the bulk of the CO at 150mb.



Conclusions(2)

� Water is not as well simulated, but we learn something

� Simulation too wet, indicating that the back trajectories are not going high
enough (thus not squeezing out enough water). A more careful formulation
of the diabatic heating is called for.

� Encounter with convection may not mean full replacement of air mass or full
saturation.

� Thickness of outflow layer may need to be specified – some clouds may detrain
above 150mb and not affect this layer as much.

� Future work to use MLS water and CO to improve the parameterization, thus
improving understanding of how convection impacts the Upper Tropical Tropo-
sphere.


